Homework Set 2

(sections 1.1 - 1.4)

Determine whether the following systems are consistent and/or unique.

1.
$$\begin{cases} x_1 + 2x_2 + x_3 = 4 \\ x_2 - x_3 = 1 \\ x_1 + 3x_2 = 0 \end{cases}$$

2.
$$\begin{cases} x_1 - x_4 = 3\\ 2x_2 + 2x_3 = 0\\ x_3 + 3x_4 = 2\\ -2x_1 + 3x_2 + 2x_3 + x_4 = 5 \end{cases}$$

Determine the value(s) of h and/or k such that the matrix is the augmented matrix of a consistent system.

3. $\begin{bmatrix} 1 & h & 3 \\ -2 & 4 & 8 \end{bmatrix}$ 4. $\begin{bmatrix} 6 & -8 & 5 \\ 3 & -4 & h \end{bmatrix}$ 5. $\begin{bmatrix} 3 & -1 & h \\ -12 & 4 & k \end{bmatrix}$ 6. $\begin{bmatrix} 2 & -1 & 3 & h \\ 1 & 0 & 4 & k \\ -6 & 3 & -9 & 15 \end{bmatrix}$

Find the reduced row echelon form of the following matrices. Interpret your result by giving the solutions of the systems whose augmented matrix is the one given.

7. $\begin{bmatrix} 4 & 3 & 0 & 7 \\ 8 & 6 & 2 & -3 \end{bmatrix}$

8.	[1 7 0	6 1 4	-3 1 -2	3 —! 4 1 3	5]
9.	[0 2 0	4 1 3	7 0 1	$\begin{array}{c} 0\\ 0\\ -4 \end{array} \right]$	
10.	$\begin{bmatrix} 0\\1\\4\\1 \end{bmatrix}$	0 0 1 2	3 0 3 7	-1 4 0 9	5- 2 8 0 -

Answer the following theory questions as concisely as possible.

- 11. Suppose a 3 × 5 *coefficient* matrix for a system has three pivot columns. Is the system consistent? Why or why not?
- 12. Suppose a system of linear equations has a 3×5 *augmented* matrix whose fifth column is a pivot column. Is the system consistent? Why or why not?
- 13. Suppose the coefficient matrix of a system of linear equations has a pivot position in every row. Explain why the system is consistent.

- 14. Suppose the coefficient matrix of a linear system of three equations in three variables has a pivot in each column. Explain why the system has a unique solution.
- 15. A system of linear equations with fewer equations then unknowns is called an *underdetermined system*. Suppose that such a system happens to be consistent. Explain why there must be infinitely many solutions to the system.
- 16. A system of linear equations with more equations then unknowns is called an *overdetermined system*. Can such a system be consistent? Illustrate your answer with a specific example of a system with three equations in two unknowns.

Given the vectors **u** and **v**, find **u**+**v**, 2**u**-3**v**, -**u**, and **v**-**u**

17.
$$\mathbf{u} = \begin{bmatrix} -2\\ 3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1\\ 2 \end{bmatrix}$

18.
$$\mathbf{u} = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ 5 \\ -1 \end{bmatrix}$

Determine whether the vector **b** is in the span of a_1 , a_2 , and a_3

19.
$$a_1 = \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}, \ a_2 = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}, \ a_3 = \begin{bmatrix} 3 \\ 6 \\ 1 \end{bmatrix}; \ b = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$$

20.
$$a_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \ a_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \ a_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}; \ b = \begin{bmatrix} -5 \\ 17 \\ 6 \end{bmatrix}$$

21. Let
$$A = \begin{bmatrix} 2 & 0 & 6 \\ -1 & 8 & 5 \\ 1 & -2 & 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 10 \\ 3 \\ 3 \end{bmatrix}$. Let W be the set of all linear combinations of the columns of A.

- a. Is b in W?
- b. Show that the third column of A is in W.

Determine whether the given vectors span \mathbb{R}^4 . Explain why or why not.

22. $\begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\-1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix}$

23.
$$\begin{bmatrix} 1\\0\\1\\-2 \end{bmatrix}, \begin{bmatrix} 3\\1\\2\\-8 \end{bmatrix}, \begin{bmatrix} -2\\1\\-3\\2 \end{bmatrix}, \begin{bmatrix} 2\\-5\\7\\-1 \end{bmatrix}$$

Compute the following matrix-vector products.

24.
$$\begin{bmatrix} 4 & 2 & 8 \\ 0 & -1 & 1 \\ 2 & 7 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} =$$

25.
$$\begin{bmatrix} 1 & 4 & 7 \\ 8 & 3 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix} =$$