Homework Set 2

(sections 1.1-1.4)
Determine whether the following systems are consistent and/or unique.

1. $\left\{\begin{array}{l}x_{1}+2 x_{2}+x_{3}=4 \\ x_{2}-x_{3}=1 \\ x_{1}+3 x_{2}=0\end{array}\right.$
2. $\int x_{1}-x_{4}=3$

$$
\left\{\begin{array}{l}
2 x_{2}+2 x_{3}=0 \\
x_{3}+3 x_{4}=2 \\
-2 x_{1}+3 x_{2}+2 x_{3}+x_{4}=5
\end{array}\right.
$$

Determine the value(s) of h and/or k such that the matrix is the augmented matrix of a consistent system.
3. $\left[\begin{array}{ccc}1 & h & 3 \\ -2 & 4 & 8\end{array}\right]$
4. $\left[\begin{array}{lll}6 & -8 & 5 \\ 3 & -4 & h\end{array}\right]$
5. $\left[\begin{array}{ccc}3 & -1 & h \\ -12 & 4 & k\end{array}\right]$
6. $\left[\begin{array}{cccc}2 & -1 & 3 & h \\ 1 & 0 & 4 & k \\ -6 & 3 & -9 & 15\end{array}\right]$

Find the reduced row echelon form of the following matrices. Interpret your result by giving the solutions of the systems whose augmented matrix is the one given.
7. $\left[\begin{array}{cccc}4 & 3 & 0 & 7 \\ 8 & 6 & 2 & -3\end{array}\right]$
8. $\left[\begin{array}{cccc}1 & 6 & -3 & -5 \\ 7 & 1 & 1 & 4 \\ 0 & 4 & -1 & 3\end{array}\right]$
9. $\left[\begin{array}{cccc}0 & 4 & 7 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 3 & 1 & -4\end{array}\right]$
10. $\left[\begin{array}{ccccr}0 & 0 & 3 & -1 & 5 \\ 1 & 0 & 0 & 4 & 2 \\ 4 & 1 & 3 & 0 & -8 \\ 1 & 2 & 7 & 9 & 0\end{array}\right]$

Answer the following theory questions as concisely as possible.
11. Suppose a 3×5 coefficient matrix for a system has three pivot columns. Is the system consistent? Why or why not?
12. Suppose a system of linear equations has a 3×5 augmented matrix whose fifth column is a pivot column. Is the system consistent? Why or why not?
13. Suppose the coefficient matrix of a system of linear equations has a pivot position in every row. Explain why the system is consistent.
14. Suppose the coefficient matrix of a linear system of three equations in three variables has a pivot in each column. Explain why the system has a unique solution.
15. A system of linear equations with fewer equations then unknowns is called an underdetermined system. Suppose that such a system happens to be consistent. Explain why there must be infinitely many solutions to the system.
16. A system of linear equations with more equations then unknowns is called an overdetermined system. Can such a system be consistent? Illustrate your answer with a specific example of a system with three equations in two unknowns.

Given the vectors \mathbf{u} and \mathbf{v}, find $\mathbf{u}+\mathbf{v}, 2 \mathbf{u}-3 \mathbf{v},-\mathbf{u}$, and $\mathbf{v}-\mathbf{u}$
17. $\mathbf{u}=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
18. $\mathbf{u}=\left[\begin{array}{l}3 \\ 0 \\ 2\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}1 \\ 5 \\ -1\end{array}\right]$

Determine whether the vector \mathbf{b} is in the span of $\boldsymbol{a}_{\mathbf{1}}, \boldsymbol{a}_{\mathbf{2}}$, and $\boldsymbol{a}_{\mathbf{3}}$
19. $a_{1}=\left[\begin{array}{l}1 \\ 4 \\ 2\end{array}\right], a_{2}=\left[\begin{array}{l}0 \\ 0 \\ 5\end{array}\right], a_{3}=\left[\begin{array}{l}3 \\ 6 \\ 1\end{array}\right] ; b=\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]$
20. $a_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], a_{2}=\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right], a_{3}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] ; b=\left[\begin{array}{c}-5 \\ 17 \\ 6\end{array}\right]$
21. Let $\mathrm{A}=\left[\begin{array}{ccc}2 & 0 & 6 \\ -1 & 8 & 5 \\ 1 & -2 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}10 \\ 3 \\ 3\end{array}\right]$. Let W be the set of all linear combinations of the columns of A.
a. Is b in W ?
b. Show that the third column of A is in W.

Determine whether the given vectors span \mathbb{R}^{4}. Explain why or why not.
22. $\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right]$
23. $\left[\begin{array}{c}1 \\ 0 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{c}3 \\ 1 \\ 2 \\ -8\end{array}\right],\left[\begin{array}{c}-2 \\ 1 \\ -3 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ -5 \\ 7 \\ -1\end{array}\right]$

Compute the following matrix-vector products.
24. $\left[\begin{array}{ccc}4 & 2 & 8 \\ 0 & -1 & 1 \\ 2 & 7 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]=$
25. $\left[\begin{array}{lll}1 & 4 & 7 \\ 8 & 3 & 1\end{array}\right]\left[\begin{array}{c}3 \\ -2\end{array}\right]=$

